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Bedload sheets are coherent migrating patterns of bed material recently observed both 
in flume studies and in field streams with beds of coarse sand and fine gravel. This 
newly recognized feature is inherently associated with the heterogeneous character of 
the sediment and consists of sorting waves with distinct coarse fronts only one or two 
coarse grains high. 

The question of the formation of bedload sheets poses an interesting and peculiar 
stability problem for the grain size distribution. Sorting waves are essentially two- 
dimensional migrating perturbations associated with variations of this distribution. 
We show that their growth is strictly associated with grain sorting. In fact the latter 
gives rise to perturbations of bedload transport which drive small perturbations of 
bottom elevation the amplitude of which scales with grain size. The sorting wave 
also induces spatial variations of bottom roughness, and consequently alters the fluid 
motion, which conversely exerts a spatially varying stress on the bed. The feature 
of bedload sheets which allows them to be distinguished from dunes over beds 
with coarse sand or fine gravel is then the fact that sorting is the dominant effect 
controlling their growth, rather than being a relatively small perturbation of the 
mechanism which gives rise to dunes in the case of uniform sediment. 

The requirement that perturbations should not alter the sediment budget leads to 
an integral condition which gives rise to an integro-differential mathematical problem. 
With the help of recently developed bedload relationships suitable for mixtures, as 
well as appropriate modelling of turbulent channel flow over a bed with spatially 
periodic perturbations of bottom elevation and roughness we are able to derive a 
general dispersion relation which can be readily solved in terms of undisturbed size 
densities in the form of sums of Dirac distributions. 

Perturbations are found to be unstable within a range of wavenumbers depending 
on the relative roughness and Froude number. We show that when the effects of 
perturbations of bottom elevation are neglected the unstable region corresponds to the 
range of conditions where the bottom stress leads bottom roughness, a range distinct 
from that which characterizes the formation of dunes. This result is given a physical 
explanation which depends crucially on the deviation from equal mobility of different 
grain sizes in the surface layer. The effect of perturbations of bottom elevation is 
however not negligible when the bottom roughness is fairly large compared to depth. 
In the latter case perturbations of bottom elevation and of bottom roughness are 
equally important, and gravel sheets are not easily distinguished from small-amplitude 
dunes. 

Comparison with the field observations of Whiting et al. (1985, 1988) is satisfactory 
insofar as the bedload sheet mode is unstable under the conditions of the experiments, 
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and the predicted wavelengths fall within the experimental range. The laboratory 
observations of Kuhnle & Southard (1988), on the other hand, appear to fall within 
a range of bottom roughness where the observed bedforms do not exhibit features 
unambiguously distinct from those of small-amplitude dunes. 

1. Introduction 
A distinct and fascinating feature of sediment set in motion in response to the 

action of a fluid in various natural environments (rivers, coastal areas, estuaries, 
deserts) is its tendency to exhibit a high level of spatial and temporal organization. 
This is displayed, for example, by the appearance of various types of bedforms, i.e. 
sandwaves characterized by a variety of spatial scales. Research developed mainly 
in the last two decades has provided a fairly consistent picture of the mechanisms 
underlying the formation of bedforms occurring in rivers. The common feature of the 
various processes is the inherent instability of flow and sediment transport in a straight 
channel to infinitesimal bottom perturbations. The latter give rise to perturbations 
of sediment transport rate which are generally out of phase with respect to bottom 
profile. As pointed out by Kennedy (1963) this phase lag is responsible for the 
growth of two-dimensional bedforms. The interested reader is referred to Engelund 
& Fredslae (1982) and Seminara & Tubino (1989) for state of the art reviews related 
to ‘small’-scale bedforms (ripples, dunes, antidunes) and ‘large’-scale bedforms (bars) 
respectively. 

In the present contribution we are concerned with a newly recognized type of 
organization of bed material recently detected both in flume studies (Iseya & Ikeda 
1987; Kuhnle & Southard 1988) and in field observations in streams with beds of 
coarse sand and fine gravel (Whiting et al. 1985, 1988). This new feature is inherently 
associated with the heterogeneous character of sediments and is clearly described 
in Whiting et al. (1988): “...bed material was organized into waves with distinct 
coarse fronts. These fronts were only one or two coarse grains high but persisted with 
downstream migration of the wave as grains eroded from upstream were redeposited 
near the coarse leading edge. We have proposed the term “bedload sheets” to refer 
to these features (Whiting et al. 1985) whose overall morphology differs from that 
typical of ripples, dunes or other bed features previously described. A bedload sheet 
can be defined as a downstream migrating accumulation of bed material, coarsest at 
the leading edge, the length of which is much greater than the height, and the height 
of which is less than three coarse-grain diameters . . . ” (see figure 1). 

The current interest in bedload sheets appears to have been sparked by the research 
of H. Ikeda and colleagues dating from 1984 and documented in the Japanese 
literature; see Iseya & Ikeda (1987) for reference to these. 

An important phenomenon accompanying the formation and development of bed- 
load sheets is the generation of “...cyclic pulses in sediment transport rates that 
vary up to a factor of order 10 ...” (Whiting et al. 1988). Transport rates reach a 
maximum soon after the passage of the coarse front. Understanding the mechanics 
of this new type of bedform may thus provide the basis to explain one reason for the 
commonly observed large temporal and spatial variations in the bedload transport 
rate of rivers. 

Bedload sheets were observed by Whiting et al. (1988) at two field sites. In one 
case they formed on the stoss side of dunes, the wavelength of sheets being somewhat 
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FIGURE 1. Sketch of bedload sheets as reported by Whiting et al. (1988): 
( a )  side and ( b )  plan view. 

smaller than the wavelength of coexisting dunes. Kuhnle & Southard’s (1988) data, 
on the other hand, refer to laboratory observations where dunes were not present. 

Let us then ask the first fundamental question: why do bedload sheets form? Whit- 
ing et al. (1988) hypothesize that they “. . . result primarily from an inherent instability 
associated with the interaction of multiple size fractions during bedload transport 
of poorly sorted sediment . . . ”. Quite recently Tsujimoto (1989) has elaborated upon 
the above idea by attempting a stability analysis of bedload transport of a sediment 
mixture composed of two size fractions, one in the gravel range and the other in 
the sand range. Tsujimoto’s (1989) basic idea is that the mechanism underlying the 
process of sheet formation would be the selective and non-equilibrium properties of 
bedload transport, in a similar fashion to that proposed by Nakagawa & Tsujimoto 
(1980) to explain dune formation in rivers, the distinct feature of the sheet case being 
the heterogeneous character of the sediment. Tsujimoto’s (1989) treatment of sedi- 
ment transport in terms of pickup and step length offers a viable alternative to the 
Exner-type formulation presented here. The flow model, however, which is based on 
a direct application of the Manning-Strickler equation to disequilibrium flow, would 
seem to be a gross and unnecessary oversimplification that might obscure the true 
nature of the phenomenon. 

In the present contribution we attempt to provide a somewhat different explanation 
of the mechanism of sheet formation. We consider the motion of a sediment mixture 
characterized by some continuous probability density function F for grain size Cp (in 
the sedimentological scale such that the dimensional grain diameter D* equals 2-4 mm) 
uniformly distributed in space and time as appropriate to uniform flow conditions. 
We then investigate the stability of such a distribution to linear perturbations both 
in space and time in the form of growing and travelling waves, but constrained so as 
to satisfy the integral condition 

1: F(CpId4 = 1. (1.1) 

The occurrence of such perturbations may be either associated with the formation 
of bedforms such as dunes or with the development of bedload sheets. Thus the 
need arises for a theory able to distinguish between the mechanisms causing the 
phenomenon. 

Indeed the basic question which needs to be answered preliminarily is the following: 
does the dynamics of a sediment mixture allow for the growth and propagation of 
pure sorting waves? In other words are regular periodic perturbations of the grain 
size distribution able to form and migrate on a strictly flat bottom? It will be shown 
below that the answer to this question is negative. However it will be seen that ‘nearly 
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pure’ sorting waves are indeed possible, the qualification ‘nearly’ simply meaning that 
small variations of bottom amplitude which scale with grain size rather than with 
flow depth (as in the case of dunes) must be allowed. 

Under such conditions what is, then, the mechanism which controls the growth of 
sorting waves? 

The basic idea is as follows: periodic perturbations of the average grain size 
associated with the formation of bedload sheets are felt by the fluid as periodic 
perturbations of bottom roughness. It follows that bottom stress is also subject 
to periodic variations which may lag behind or lead ahead of the corresponding 
perturbations of average grain size depending on the perturbation wavenumber. 
Sorting also drives spatial perturbations of the bedload transport rate which give 
rise to perturbations of bottom elevation. The requirement of sediment continuity for 
each size along with the integral condition (1.1) then leads to a dispersion relation 
which shows that perturbations do indeed grow within a range of wavenumbers, 
depending on the relative roughness and on the Froude number of the flow, provided 
the mobilities of different grain sizes in the surface layer are unequal. This is shown 
analytically for the case of small standard deviations of the mixture and mixtures 
composed of two sizes. The case of arbitrary size distribution is then analysed. 

The interest and novelty of the analysis proposed in the present paper appears to 
be of more general significance. Indeed the effect of sorting on all river bedforms can 
be incorporated into the classical approaches following ideas similar those presented 
herein. 

The development of the above analysis has been made possible by recent achieve- 
ments in modelling of bedload transport of sediment mixtures. In the next section 
the main results of these latter investigations will be reviewed in the context of the 
formulation of the present problem. The perturbations of bottom stress induced by a 
spatially varying bottom elevation and roughness are derived in $3. Section 4 is de- 
voted to the stability analysis. The instructive case of a mixture characterized by small 
standard deviation is analysed in $5. Section 6 is devoted to results and comparison 
with experimental observations, along with some conclusions. 

2. Formulation of the problem 
Let us consider uniform turbulent free surface flow of an incompressible fluid of 

density p in a wide straight channel and refer to Cartesian coordinates (x*, y’), the x* 
axis being aligned with the uniform flow direction. Hereafter a star superscript will 
denote dimensional quantities. We denote by HG, U;, Fr, S the uniform values of flow 
depth, average speed, Froude number and slope of the channel respectively. 

We assume the channel bottom to be cohesionless, and denote by F ( 4 ;  x*, t’) the 
probability density function describing the distribution of grain sizes available for 
transport. Sediment available for transport lies in a surface layer, called the active 
layer (Hirano 1971), which is known to be coarser than the substrate at low flow rate, 
a phenomenon called ‘mobile armoring’. The thickness Lf of the active layer under 
flat bed conditions is usually assumed to scale with i.e. the grain size such that 
90% of the sample is finer. 

In general, as indicated above, F may depend both on space and time. We denote by 
Fo(6)  the distribution associated with the basic uniform flow. We wish to investigate 
the development of perturbed configurations, and thus denote by f ( x ’ ,  t*)  the pertur- 
bation of the grain size probability density function. The latter perturbations drive 
flow perturbations which, as usual in bedform instability problems, develop much 
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faster than the bottom. Hence the flow can be assumed to adapt instantaneously to 
any variation of grain size distribution. This assumption of quasi-steady flow implies 
that the flow equations may be decoupled from the sediment continuity equation. 
Flow perturbations determine the distribution of bottom shear stress, which in turn 
controls bedload transport of each size fraction. 

The first ingredient with which to tackle the above problem is the development of 
an appropriate dynamic equation for bedload transport of a mixture. 

Equilibrium transport formulas for mixtures have been the subject of several 
investigations in recent years. One of the present authors has recently (Parker 1992) 
reviewed this topic. The reader is referred to that paper for details. Here we simply 
recall the main conclusions which can be reached on the basis of most recent research. 

It has long been recognized since the work of Einstein (1950) and Egiazaroff (1965) 
that the dynamics of a sediment mixture is characterized by a so-called 'hiding' effect 
whereby fluid drag acts more intensely on coarser grains, which typically protrude 
more into the turbulent boundary layer than finer grains. Hiding counteracts the 
opposing effect of gravity, which makes finer grains more mobile than the heavier 
coarse grains. 

In order to quantify the above effects it is convenient to express the volume bedload 
discharge per unit width q' for a uniform sediment with relative density s subject to 
a uniform bottom stress 7; in the form 

3/2 
(2.1) = 7 .  G(t.), 

where 

4' 
[(s - l)gD*3]'/2' 4 =  

z. = 
p ( s  - 1)gD'. 

The dimensionless quantity z. is known as the Shields stress. If G were constant 
the bedload discharge would be independent of sediment size, as grain diameter is 

*3/2 . present both in the scaling of q' and of zo in identical form. However for uniform 
sediments G is found to be a rapidly increasing function of z.. This is particularly 
true in the neighbourhood of the critical condition for sediment motion. The simplest 
generalization of (2.1) for a mixture would be of the form 

q+ = z. 3/2 Gb*(4)1 F(4)> (2.4) 

where q4d+ is the volumetric bed load discharge per unit width of grains in the size 
range I$,+ + d4, ~ ( 4 )  is the Shields stress associated with grain size 4, and G is a 
function taken to be identical to the function obtained for uniform sediment. Such a 
generalization would, however, be inappropriate as it does not account for hiding and 
ensures an extremely strong bias towards fine material in the transported bedload. 
Indeed the size density of the transported bed load material F T ( 4 )  reads 

It is seen that G plays the role of a weight function such that larger values of 4, i.e. 
finer material, lead to larger values of F T .  

In order to overcome the above difficulty it has been suggested by various authors 
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(Ashida & Michiue 1972; Proffitt & Sutherland 1983; White & Day 1982; Samaga, 
Ranga Raju & Garde 1986; Ribberink 1987; Parker 1990) that the function G should 
be modified through the inclusion of a weight function g h  able to mitigate the bias 
toward fine material in the bedload relation. 

In Parker (1990) the following form for the function G is proposed: 

5474( 1 - 0.853/[)4.5, [ > 1.59 
1 < 1 < 1.59 G([) = 0.00218 exp[14.2(1 - 1) - 9.28([ - 1)2], (2.6) i 114.2, r < 1, 

where [ is a dummy parameter. 

form 
Denoting by D i  the geometric mean size, Parker (1992) suggests for [ the general 

where z . ~  is Shields stress based on the geometric mean diameter Di and L~ is 
a reference Shields stress. It follows easily from (2.7) that if the approximation of 
substrate-based ‘equal mobility’ of Parker & Klingeman. (1982) were to prevail for 
surface material as well then the hiding function g h  must be given by gh = D’/Di.  

Parker (1990) used the concept of (2.7) to develop the slightly more general form 

where o is a straining function of the form 

and 
cc 

g2 = /!*w - 4d2Fd4 ,  4g = /!I F4W. (2.104 b )  

The parameter p in (2.8) takes the value 0.095, corresponding to a hiding function 
of the form g h  = (D’/0~)0~905. The fact that p > 0 means that the bedload size 
distribution is systematically finer than that of the surface material. The reference 
Shields stress z,, takes the value 0.0386. Note that the straining function o explicitly 
accounts for the effect of the standard deviation o of the surface grain size distribution 
on the transport rate. A form for this straining function has been proposed by Parker 
(1990) based on field observations. 

The appropriate generalization of (2.4) is then 

q g  = quF, (2.1 la ,  b )  

where qg corresponds to q4,  but is scaled using D i  rather than D’ as reference length 
and 1 is defined by (2.8). 

The basic equation governing the bedload sheet problem is a statement of mass 
balance which must be imposed upon each size fraction. Since bedload sheets may be 
considered to result from a rearrangement of the material present in the active layer 
such that the bottom develops only minimal topography, we may neglect interaction 
between the substrate and the active layer. Denoting by y ~ ’  bottom elevation and by p 
the porosity of the mixture, a grain-size-specific statement for mass balance (reduced 
to a volume balance if sediment density is uniform) takes the dimensional form (see 
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Parker 1992) 

( 1  - P)(FV:,* + L&*) = -(4:F).x*. (2.12) 

It  is convenient to reduce (2.12) to dimensionless form by defining 

4; 
[(s - l)gD;a]1/2' 4 u  = 

X* x=- 
H,"' 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

where DiO denote the median diameter of the surface layer under uniform flow 
conditions. Sediment continuity then reads 

FVJ + L F , ,  = - ( q u F ) , x .  (2.17) 

Notice that the scaling (2.15) is appropriate to the case of bedload sheets the amplitude 
of which scales with the grain size rather than on the flow depth as in the case of 
dunes. 

Equation (2.17) must be coupled with a dynamic equation for sediment motion. 
The simplest assumption at this stage is to assume that bedload sheets constitute a 
quasi-equilibrium configuration such that bed load discharge for each size is deter- 
mined only by the local value of Shields stress. In this case the appropriate dynamic 
equation simply reads 

(2.18~-C) 

where zeg is the Shields stress based on the undisturbed value of the geometric mean 
size Die. That is, 

(2.19) 

where T is the stress tensor associated with the motion of the fluid evaluated at the bot- 
tom, and h and 2 are the unit vectors normal and tangential to the bottom respectively. 

The straining parameter w can now be cast as a function of the form 

w = U(@, T ) .  (2.20) 

Finally, the thickness Li of the active layer is taken to be proportional to a typical 
coarse grain size DZ defined as 

Here Di  becomes identical to Di4 in the case of a lognormal distribution. In general 
DZ can be expected to be close to D&. Hence we write 

Di = Di2". (2.21) 

where n, is an order-one coefficient. 

(2.22) 
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We point out that the quasi-equilibrium assumption is a convenient one when the 
spatial variations of Shields stress are very slow. When the wavelength of bedload 
sheets is of the order of one flow depth, however, the above assumption might be 
too restrictive. Tsujimoto's (1989) analysis of sediment mass balance might provide 
a less restrictive formulation, although the flow model offered there would require 
amendment to one closer to the one presented below. 

The mathematical problem governing sediment motion is, then, formulated by 
(2.17)-(2.22) along with the integral condition (1.1). The latter problem is coupled 
with that governing the motion of the fluid in a channel characterized by spatially 
varying roughness and bottom elevation. This topic will be covered in the following 
section. 

3. Flow field in a channel with small-amplitude periodic roughness 
perturbations 

We consider a viscous incompressible fluid flowing in an infinitely wide channel 
with a bed characterized by a variable roughness. More precisely we assume the 
roughness height k,  to be proportional to Dz as defined by (2.21) with a value of the 
constant of proportionality usually ranging between 2 and 3.5 for gravel bed rivers. 

The question of how quickly a turbulent boundary layer responds to a variation 
of roughness has been addressed by numerous researchers. Jacobs (1939), Townsend 
(1961, 1965), Antonia & Luxton (1971, 1972), Nezu et al. (1990) and Tsujimoto, 
Cardoso & Saito (1990) have analysed both theoretically and experimentally the 
problem in the case of a step-like abrupt change of roughness in boundary layers 
and channel flows. Both the theoretical work and the experimental results show 
that flow perturbations are confined within an inner boundary layer, the outer layer 
remaining practically unaltered except for a streamline displacement effect. The latter 
finding applies to the case of zero-pressure-gradient boundary layers. In this case a 
step-like change of roughness induces a perturbation layer the thickness of which 
increases downstream, and a transition occurs from the self-preserving structure of 
the boundary layer upstream to a new self-preserving structure downstream. Whereas 
all theoretical treatments assume the persistence of a near-wall equilibrium layer in 
the transitional regime, the experimental findings of Antonia & Luxton (1972) suggest 
that deviations from equilibrium occur due to a non-negligible effect of longitudinal 
advection and transverse turbulent diffusion of longitudinal momentum. As a result 
the mixing length distribution in the inner layer is still linear in the vertical coordinate, 
but the proportionality constant is smaller (larger) than the Karman constant for a 
smooth to rough (rough to smooth) variation of roughness. 

All the above results are based on experiments performed on a single type of 
roughness. No information is available on the effect of changing the amplitude of 
the latter nor are the authors aware of experiments which involve different spatial 
distributions of roughness. 

In the present problem roughness variations are taken to be spatially periodic 
and characterized by infinitesimal amplitude. We will take advantage of the above 
assumptions by hypothesizing that deviations from equilibrium in the inner layer are 
also small and may be described by linearized forms of the appropriate conservation 
equations and of the classical closure assumptions. 

Let us then refer to a Cartesian coordinate system (x* ,y " )  such as the one sketched 
in figure 2 and denote by ( U " ,  V ' )  the corresponding local velocity vector averaged 
over turbulence. The three curves y" = y i , y *  = y i  and y* = y: identify the free 
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FIGURE 2. Sketch of the channel and notation. 

and bottom surface and the reference level respectively. The reference level is defined 
as the conventional offset level at which the mean velocity essentially vanishes. The 
distance between the bed and the reference level is assumed, as for a uniform flow, to 
be proportional to the local value of the above-mentioned roughness height. 

The steady Reynolds equations in dimensionless form then read 

where P is the mean dynamic pressure and Ti, is the Reynolds stress tensor. Variables 
have been made dimensionless using the friction velocity and depth of the unperturbed 
uniform flow and the fluid density. 

The kinematic and dynamic boundary conditions to be associated with (3.1)-(3.3) 
read 

U - etb = 0 (dynamic), 
U - en,, = 0 (kinematic), 

at the bottom (y = y r ) ,  while at the free surface ( y  = y,) we have 

el, * T - ens = 0 (dynamic), 

ens T - ens = 0 (dynamic), 
U - ens = 0 (kinematic), 

where U is the two-dimensional velocity vector ( U ,  V ) ,  T is the two-dimensional 
Reynolds stress tensor and etb, e,,, enb, and ens are the unit vectors tangential and 
normal to bottom and free surface respectively. 

In order to close the above formulation we employ a Boussinesq-type assumption 
which reads 

Tij = v ~ ( U , j  +v,i ), (3.9) 
with i = x,y, j = x,y  and vT dimensionless eddy viscosity. Furthermore we as- 
sume weak perturbations of bottom roughness, and accordingly use a mixing length 
structure for V T  in the form 

(3.10) 

where 8 is a dimensionless mixing length given by 

(3.11) 

In the above H is the dimensionless local flow depth and IC is the Karman constant. 
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We point out that results obtained in the absence of roughness variation through 
the above simple closure scheme have been compared with those derived by means 
of the more complete one-equation closure model employed by Richards (1980). The 
latter model expresses eddy viscosity in terms of the turbulent kinetic energy, for 
which an appropriate balance is imposed between production, dissipation, advection 
and diffusion. Results of the two models were found to be so similar both qualitatively 
and quantitatively that it seemed convenient to minimize the numerical effort by using 
the above local assumptions. It will become apparent below that the mixing length 
assumption (3.10) allows for small perturbations with respect to the unperturbed 
configuration. 

It is convenient for numerical purposes to employ the following transformation of 
variables: 

(3.12) 

Furthermore we stipulate that 

y, - Y b  = R = mk,, (3.13) 

where m is a constant that has traditionally been set equal to $ based on the 
logarithmic law for rough flow. 

We now assume the following representation of the flow field: 

(u, V,piH,8,VT,R,y6) = (uO,o,pO, 1 i f O > v T o i h , o )  

+ ~ [ ( U I ,  Y I , P I , H I , ~ I , v T I , R ~ ~ , ~ ) ~ ~ ~ ~ ~ ~  +c.c.] + O(E*),  (3.14) 

with the parameter E chosen to be small in accordance with the assumption of weak 
perturbations of the uniform configuration. Note here that e denotes the perturbation 
of bed elevation and r denotes a normalized perturbation of bed roughness. These 
two parameters play an important role in the succeeding analysis. 

The above expansion can then be substituted into the governing equations, bound- 
ary conditions and closure assumptions to obtain a sequence of problems at the 
various orders of approximation in the small parameter E .  We skip the details of the 
latter procedure, which is tedious but standard, and simply show the main results. 

0(f0) 
At leading order we recover the equilibrium uniform solution written in terms of 

the transformed coordinates 5 and x. More precisely we obtain the following, where 
the primes denote differentiation with respect to x: 

V T O U t  + Vk0U;) = -1, PA = 0, (3.15a, b )  

VOlx=O = 0, VTou; lx=l  = 0, Pojx=l = 0, (3.1 6 ~ - C )  
where 

VTO = f i U ; ,  80 = k(x  + &)(l - x ) ” ~ .  (3.17a, b )  
In the above equations and in the following, we have neglected &, = mkro with 

respect to 1, i.e. one thirtieth of the roughness height is neglected compared to the 
depth, an assumption which can be expected to be valid for all but extremely shallow 
flows. The above system immediately integrates to yield 

(3.18a, b )  

i.e. the classical rough logarithmic law. 
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O k l )  
It is convenient to express the O ( d )  solution in the form 

( v l , H 1 )  = (.(X),h)7 (v l ,p l )  = ia(v(x),p(x)), (3.19a,b) 

so that the differential equations governing the unknown functions u(x) ,  v(x), p ( x ) ,  h(x)  
can be written as 

LZ= Af; (3.20) 
where 

z = (  F). I = (  ;), (3.21) 

while the linear differential operator L and the matrix A are given in Appendix A. 
Imposing the linearized boundary conditions (provided by (3.4)-( 3.8)), the differen- 

tial problem (3.20) is readily solved numerically by shooting techniques. Its solution 
can be written as 

z = + Zhh + Zee + Z J ,  (3.22) 

with the subscript horn referring to the homogeneous part of the above differential 
system, while the subscripts h, e, r refer to particular solution of the complete system. 
The amplitude of depth variation h can be expressed in term of e and r to give the 
relative amplitude of free surface undulations. 

Once the solution is available the bottom stress can be evaluated in the dimension- 
less form 

= V T ( U , y  + v , x  )ly=y,. (3.23) 
Scaling z in Shields form one can eventually derive the following relationship for 
Shields stress: 

zag = ~ . ~ , ( l  + E [ Z . ~ ~  expiat + c.c.]), (3.24) 

where z.~, is the unperturbed Shields stress and zegl is the correction associated with 
the perturbation of bottom amplitude and roughness. 

Needless to say z.gl is a complex number the imaginary part of which controls the 
phase lag of L~ with respect to D,. After some algebra zeg1 may be related to the 
flow field as follows: 

where again t, and t, are in general complex, serving to quantify the effects of 
variation in bed elevation and roughness, respectively, on the Shields stress. 

4. Bedload sheet instability: formulation 

grain size distribution which drive perturbations of bottom elevation. 
We now investigate the development of bedload sheets, i.e. perturbations of the 

Let us assume 

( F ,  4 g >  c) = (Fo(4), 4g0, OO) + [(F(t ,  4)? (Pg(t), cOcl(t))exp iax + c.c.] > (4-1) 
q = qo + e[e(t) exp iax + c.c.], (4.2) 
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cc cc 

&go = 1, FO4dh 0; = 1 * ( 4  - 4go)2FOd&, 

0 1  = ~ / " ( 4  - &go)29w. 

(4.3a, b )  

(4.4a, b )  

Here 'pg characterizes the perturbation of mean surface grain size and oI characterizes 
the perturbation of surface standard deviation. 

According to (3.13) and the previously introduced assumption that k ,  is proportional 
to Di, it is readily found that 

(4.5) 

(4.6) 

4% = p 4 d A  20; -- 

r = ln(2)(-qg + 0001). 

T . ~  = ~ . ~ ~ ( l  + e[( t ,qg + t u c O ~ 1  + tee)expiolx + c.c.]), 

Equations (3.24), (3.25) and (4.5) can now be combined to yield 

where tu = -t, = t,. In 2. 
The above expansion describes the physical mechanism whereby perturbations of 

F are felt by the flow field as perturbations of local roughness, thus inducing a 
secondary flow which in turn gives rise to perturbations of bottom stress. Further 
contributions to the latter are also induced by the small perturbations of bottom 
amplitude needed for mass conservation of the sediment mixture to be satisfied. 

The argument c of the function G (see 2.18b) can be written as 

(4.7) 

and expanded in the form 

i = c o p  + 4 c 1 , ( P g  + i l u ~ 0 0 l  + [lee) exp iax + c . 4 ,  (4.8) 
leading to the following relationships for the coefficients at O(E)  : 

where 

(4.9) 
(4.10) 
(4.11) 

(4.12a, b )  

Combining (2.18) with (4.6) and (4.8) we can finally expand the bedload discharge 

(4.13) 

per unit width as 

qu = quo(l + f [ (qq'pg + qucogi + qee)expiax + c.c.]), 

with the following relations for the basic state: 

(4.14) 3/2 q u o  = z*goG(io), 

(4.15) 

(4.16a, b )  

The complex coefficients q,,qu and qe represent the perturbations of the bedload 
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discharge per unit width due to variations of the mean and variance of the grain 
size distribution (qg, 01) and to the perturbation of 
respectively, 

qq = rC1q qg = 3 t m  + r C 1 u ,  q e  

where the parameter r is defined as 

bottom elevation (e). They are, 

(4.1 7a-c) 

(4.18) 

Before feeding the expansions (4.1), (4.2), (4.6), (4.8), (4.13) into the sediment 
continuity equation (2.17) we must also expand the thickness of the active layer L, 
which is taken to be proportional to DZ. We will need only the unperturbed value of 
La, namely 

La, = na2'0. (4.19) 
Hence, at order E ,  (2.17) reads 

~ o e , f  + Lao9,r = -iaquo ( ~ 0  [qqqg(t) + qccoOl(t) + qee(t)] + 9(4 , t )} .  (4.20) 

If bedload sheets are to be distinguished from dunes, which are associated primarily 
with the bed perturbation e, then the mean grain size perturbation 'ps and the 
perturbation of the standard deviation 01 must play a crucial role as regards the 
former. 

Let us now impose on (4.20) the conditions 

1: Fod4 = 1, JyUFdO = 0, (4.2la, 6 )  

which follow from (1.1). We are led to a system of two integro-differential equations 
for the unknown functions e(t), F ( t ,  4) 

(4.22~) 

(4.226) 

where the overbar is defined as follows: let d be a generic function of 4, then 

(4.23) 

The solution of (4.22) can be written in the form 

(e, 9) = (2, f )  exp(-iact), (4.24) 

where 2 and f(4) are solutions of a system of two integral equations obtained by 
substituting from (4.24) into (4.22). 

At this point the solution procedure can be greatly simplified by approximating 
the continuous size distributions for Fo(4) and f ( 4 )  by a series of n steps associated 
with sizes 4i, i = 1,2,. . . , n, as shown in figure 3. The density function Fo for such a 
mixture may be written in the form 

n 

FO = C Foih(4 - 4i)j (4.25) 
i= 1 
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FIGURE 3. Schematic of continuous and discrete cumulative grain size distributions. 

where S(4 - $ i )  is a Dirac function centred at 4i. The condition (4.21a) then requires 
that 

n 

C Fo; = 1. (4.26) 
i= 1 

Similarly, recalling (4.216) we can express the amplitude of the perturbation f in 
the form 

n 

with 
i=l 

n 

i= 1 

From (4.23) it finally follows that 

where di is the value of the function d evaluated at 4 = 4i. 
Recalling (4.28) we derive a system of n equations in the n unknowns f i ( t ) ( i  = 

1,2,. . . , n - 1) and 2. integrating (4.22a) from 4; to 4T(i = 1,2,. . . , n - I), a total of 
(n - 1) equations are found. The nrh equation is provided by (4.22b). We obtain 

n-1 

Cfj(4j - 4 n )  
j=  I 

Laocfi = Foi(quoiqqi 

~ n-I 
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n- 1 

+=; + C f j ( q u o j  - quon) ,  

j =  I 

whence the following linear algebraic eigenvalue problem arises : 

(4.31) 

M X  - Laocl = 0, (4.32) 

where 

and M is the matrix ( i , j  = 1,2,. . . ,n - 1) 

M. .  i j  = 6. .  ijquoi + f'oi(quoiqqi - GGJ(4j - 4 n )  (4.33a) 

(4.33c) 
(4.33d) 

The solvability condition for the linear homogeneous algebraic system (4.32) pro- 
vides the eigenrelationship for our stability problem. In general n eigenvalues for c 
can be readily obtained from (4.32). 

5. The case of weak sorting 
In order to clarify the mechanism of bedload sheet instability it is convenient at 

this stage to consider first the case when sorting is constrained to be 'weak' by the 
condition of small standard deviation of the base mode. This can be obtained by 
assuming that the basic density function Fo(6)  takes the form 

where 

and 

The implication is that Fo(6)  differs only weakly from a Dirac function centred at 

The integral conditions (4.13a), (4.3a,b) then lead to the following condition for 

00 << 1. (5.3) 

4 g o .  

FcQ(w): 
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(5.4) 

LI Y2Foo(Y)dY = 1. 

Similarly we may expand F(#, t )  in the form 

Hence, from (4.4): 

(Pg = 0OCpgl + O(G,2), 0 1  = 010 + O(ao), (5.8a, b )  

(Pgl = ~ m Y B o ( Y ) d Y ,  010 = - s” Y2Fo(Y)dY. (5.9a, b )  

(5.10) 

L,,, = nu, L,,~ = In2, L,,* = (In2)*. (5.11~-c) 

The first distinct feature of the bedload sheet mode is the fact that perturbations of 
bottom amplitude e are passively driven by perturbations of the grain size distribution, 
being needed only to balance the longitudinal variation of total transport associated 
with non-uniformity of the grain size distribution. In other words the bedload sheet 
mode may be characterized by the following expansion for e: 

e = el00 + 0(0,2). (5.12) 

The latter assumption rules out the ‘dune’ mode from the output of the present 
analysis. In fact the appropriate expansion for e in the dune case involves a dominant 
O( 1) contribution corresponding to the development of dunes in uniform sediments. 
The latter is slightly corrected at higher order in 00 by the effects of sorting. We 
choose not to examine the dune mode here, and rather proceed from (5.12) in our 
investigation of the bedload sheet mode. 

Expanding all the quantities that appear in the integro-differential system (4.22) 
in powers of 00 and collecting terms of the same order, we find a set of linear 
integro-differential systems that can readily be solved in cascade. Since the algebra 
involved in this process is rather tedious, we have moved the solution of the systems 
to Appendix B and discuss here only the structure of the solution itself. 

where 
m 

2 --co 

Furthermore 

La, = La,,[l + 0 0 L u o l  + &Lao2 + O(031, 
where 

Recalling (5.7) and (5.12) we find 

(5.13) 
(5.14) 

el = 81 exp[-iaco(t + clzl + c2rz)], (5.15) 

where r1 and r2 are ‘slow’ time variables, defined in the form 

(5.16a,b) 2 r1 = uot, z2 = oat. 
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The complex growth rate of perturbations is then found to be 

c = CO[l + G0C1 + &2 + 0(0,3)1, (5.17) 

where cO,cl and c2 follow from the solution of the integro-differential system (4.22) 
at the various orders of approximation. 

It turns out that co and c1 are real positive numbers, while c2 is complex. This result 
clearly displays the second fundamental feature of the bedload sheet mode, namely 
the fact that it is dominantly a ‘sorting wave’ which propagates downstream with 
vanishing growth rate. Growth of the perturbations is seen to arise only at second 
order. 

is given in Appendix B. It should be 
noticed that 8, involves the quantities t,,t, and t,, which are complex in general. It 
hence follows that perturbations of bottom elevation driven by sorting are not in 
phase with perturbations of the grain size distribution. 

In order to clarify the mechanism controlling the formation of bedload sheets, it 
is particularly instructive to consider first the case of a mixture characterized by a 
bimodal distribution with small standard deviation modelled as a mixture composed 
of two sizes, say 

Foo = FoolN4 - 41) + F002&(4 - 4 2 ) 7  (5.18) 

The amplitude of bottom perturbation 

and 4 2  with 41 < 42. Then 

with 
Foo2 = 1 -Fool. 

Hence from (4.3), (5.2) we obtain 
(5.19) 

(5.21a, b )  

Furthermore we may write 

f o  = fO1&4 - 41) + f028(4 - 421, (5.22) 

with 
f 0 2  = -f01. (5.23) 

From (B18), (B21), (B25), (B27) (see Appendix B) one finds: 

(5.24) 

(5.25) 

c2 = -Lao2 - LaolCl + Y20 + Y21W1 + y22Y): 

- Fool [(IJIO + v l l w l ) ( w l  - w2)  + (v20 + v21vI)(w: - w:)] . (5.27) 

As mentioned above, cg and cl are real quantities, which implies that bedload sheets 
are pure sorting waves up to order GO. Growth occurs at order go’. Let us examine the 
various contributions displayed by (5.27). 

Assume first that Fool = Fo02 = 1/2, hence 7p2 = --yl = 1, and neglect the effect 
of perturbation of bottom elevation on bottom stress. The latter condition will be 
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seen to arise when the average relative roughness D,, is fairly small. Under these 
conditions (5.27) gives only one contribution to the growth rate, namely 

Wc2) = [FoolTOP In 2 (; + L) Yl ( W l  - Y2)] Im(t,). (5.28) 

Since the quantities r,, (5/2 + r,) and [tpl(yl- y2)] are all invariably positive (5.28) 
predicts instability provided Im(t,) is positive. This finding has a simple physical 
explanation. Let us consider a flat bed with spatially periodic roughness associated 
with spatial variations of the fractional content of the two sizes 41 and 42. Let us 
place ourselves at the peak of concentration of the coarser fraction 4,. The growth 
rate of perturbation is then controlled by the sign of d F / d t  evaluated at this location. 
It is straightforward to show that the only contribution to d 8 / d t  comes from the 
quantity 

(5.29) 

In other words the growth of perturbation of the fractional content of each size is 
associated with the excess of spatial gradient of transport capacity of that size relative 
to the average spatial gradient of transport capacity. Now G is an increasing function 
of [ and variation in [ is proportional to variation of zlg (i.e. to t,cp,). Since the 
imaginary part oft ,  is positive, the peak of transport capacity for each size fraction 
is located within the half-wavelength downstream of the peak of coarse sediment. 
Hence (-dG/dx) is negative at the peak. Now, if P were identically zero (i.e. the 
condition of equal mobility of surface material) the quantity (-dG/dx) would not be 
a function of 4 and no growth would arise. The fact that the finer fraction is slightly 
more mobile renders the quantity (-dG/dx) slightly larger than the average for the 
coarser fraction, resulting in growth of the perturbation. 

If the condition Fool = Fm2 = 1/2 is relaxed a second contribution to Im(cz) arises: 

pml r0P  In2 (; + rs) w1 (Y1 - w2)]  $CYl+ Yz)Im(tu) (5.30) 

Since tu = -t, one readily concludes that the effect of the perturbation of the 
standard deviation on the growth rate is destabilizing provided that the finer fraction 
is in excess. 

Finally if the effect of the bottom elevation perturbation is not negligible, the above 
conclusions are significantly altered, as noted below. 

In order to appreciate the significance of the above discussion it is necessary to 
point out that the condition Im(t,) > 0 is satisfied within a region of the (Fr ,  a)-plane 
which is quite close to the region where Im(t,) < 0. The latter condition defines the 
region where dunes in uniform sediment do not grow. Hence under the assumptions 
which lead to (5.28), the existence of bedload sheets is predicted only under conditions 
where dunes are not present. If the effect of t, is not negligible, however, the regions 
of existence of dunes and bedload sheets are no longer disjoint. 

6. Results and discussion 
Before proceeding to a comparison between our theoretical predictions and the 

observations of Whiting et al. (1988) and Kuhnle & Southard (1988) (hereafter 
referred to as W and K&S respectively), let us substantiate the analysis developed in 
$5 for the case of mixtures characterized by small standard deviations by comparing 
the approximate solution for the weak sorting case with the complete solution for 
arbitrary 00 formulated in $4. 
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c = cg I 

Complete 
0.4 1 

I 
1 I I I I I 

0 0.1 0.2 0.3 0.4 0.5 

0 0  

0 0.1 0.2 0.3 0.4 0.5 

00 

FIGURE 4. (a )  Real and (b)  imaginary parts of the growth rate c at various orders of approximation 
for the weak sorting case and for the solution for arbitrary a0 

For the sake of simplicity we will consider the case of a mixture composed of equal 
percentages of two sizes 6, and 62. 

Figure 4 shows the behaviour of the power series solutions (5.17) for Re(c) and 
Imfc) at the various orders of approximation and the corresponding complete solution 
as a function of go for a given set of parameter values (zeg0 = 0.065, a = 3, D,, = 0.01). 
The agreement is quite satisfactory up to a value of 00 near 0.25. 

We now proceed to compare our predictions with the experimental observations 
of W and K&S. Whiting et al. (1988) observed bedload sheets at Muddy Creek 
and Duck Creek. The grain size probability density functions for the two creeks 
are available from W s  data. In Muddy Creek the bed was composed of a mixture 
containing fine and coarse sand while in Duck Creek the bed was a mixture of fine 
and coarse gravel. 

In order to reduce the numerical effort as much as possible we modelled W s  



272 

- 

G. Serninara, M .  Colombini and G. Parker 

2 
Unstable 

I I I I I I I i 

Run 41 dz 43 4 4  FOI FOZ F03 FM D,,) F, c1 

M C  1.5 0.5 -0.5 -1.5 0.24 0.38 0.25 0.13 0.004 0.43 0.135 - 3.5 
DC 1 -1 -2.5 -3.5 0.14 0.25 0.49 0.12 0.013 0.35 0.04 - 2.5 

TABLE 1. Surface grain size distribution and relevant flow and sediment parameters reconstructed 
from Whiting et al. (1988). The mixture is modelled as composed of four grain sizes. M C  denotes 
Muddy Creek and DC Duck Creek. 

1.2 

1 
1 .0 

0.8 
Fr 

0.6 

I 0------ 
0.4 

0 
a 

FIGURE 5. Marginal stability curve (solid line) calculated for the values of flow and sediment 
parameters reconstructed from data reported by Whiting et al. (1988) for Muddy Creek. The 
marginal stability curve obtained on neglecting the effect of bottom elevation on bottom stress is 
also plotted (dotted line). 

mixtures using four sizes, allowing us to derive the eigenrelationship analytically as a 
solution of a quartic, a task which can also be accomplished analytically. 

The values of 4, and F o j ( j  = 1,2,3,4) reconstructed from the cumulative distribu- 
tions given in figure 2 of W are reported in table 1, which shows also the flow and 
sediment parameters reconstructed from W s  data. 

We then proceeded to determine the stability characteristics of the flow configura- 
tions reconstructed for W s  observations modelling the mixture as described above. 
Using the theory developed in $3 we were able to calculate z,,? as given by (3.25). To 
this end we solved the differential system (3.23)-(3.25) numerically using a shooting 
technique. The value of T * ~ ~  was then fed into (4.8)-(4.11), (4.13), (4.17) so that the ele- 
ments of the matrix M defined by (4.33) could be calculated and the eigenrelationship 
(4.32) with n = 4 determined for the given values of the flow and sediment parameters. 
In other words we determined four eigenvalues ck(k = 1,2,3,4) as functions of Fr 
and a for each of W's observations, i.e. for a given values of Dg(?. Marginal stability 
is characterized by the condition max[Im(ck)] = 0. The preferential wavelength is 
associated with the maximum value of Im(ck) for any given value of Fr and Dgc,. 

Figure 5 shows the marginal stability curve for Muddy Creek. Two unstable regions 
can be recognized in the plot, the lower one for a range of Froude numbers and 
wavenumbers close to the observed ones. Also shown (dotted lines) are the marginal 
stability curves obtained on neglecting the effect of perturbation of bottom elevation 



Nearly pure sorting waves 
. . . . . . . .  . . . . . . . . .  . . . . . . .  . . . . . . . . .  . . . .  . . . . . . . . . . .  . .  ............................................. 
. . . . . .  ........................... . . . . . . .  .......... . . . . .  ..................... . . . . . . . . .  . . . . . . . . .  . .  .............................. 

....................................... ........................ ..................... 
..................................................... 

. . . . . . .  . . . . . . .  . .  

'. '. . '. 
. .  

.._ 

273 

1.2 

1 .o 

0.8 
Fr 

0.6 

0.4 

0 1 2 3 4 

a 
FIGURE 6. Contours of growth rate calculated for the values of flow and sediment parameters 
reconstructed from data reported by Whiting et at. (1988) for Duck Creek. Solid lines and dotted 
lines represent positive and negative growth rate respectively. The thick solid line is the marginal 
stability curve. 

41 42 43 454 FOI FOZ F03 FW Dgo Fr 
-4.5 -3.5 -1.5 -0.5 0.191 0.496 0.239 0.074 0.1 1.1 

TABLE 2. Surface grain size distribution and relevant flow and sediment parameters reconstructed 
from Kunhie & Southard (1988) (run H3). The mixture is modelled as composed of four grain sizes. 

on bottom stress. It turns out that for values of D,, as small as for the Muddy Creek 
case, the latter approximation appears to be justified. Hence the physical mechanism 
of bedload sheet instability discussed at the beginning of this section for the case of 
small no appears to apply to this context. However it should be pointed out that the 
unstable region in the high-wavenumber range at low Froude numbers does not arise 
if the effect of t ,  is neglected. 

As D,, increases, as in W s  field observations of Duck Creek, the latter approxima- 
tion is no longer found to be justified. This is shown in figure 6 where the marginal 
stability curve for Duck Creek is presented. Note that Duck Creek is characterized 
by a bed composed of fine gravel with D,, = 0.013, a value nearly four times as large 
as for Muddy Creek. 

It appears that in the case of Duck Creek the unstable region is no longer distinct 
from that for dunes in uniform sediment (see figure 10 of Richards (1980) for the 
stability limits for dunes in uniform sediment). However notice that two relative 
maxima now appear, as opposed to the single maximum associated with dunes in 
uniform material. As in the case of Muddy Creek, the bedload sheets observed in 
Duck Creek have wavenumbers within the zone where the theory predicts that they 
should form. 

Comparison with K&S's laboratory observations (run H3) is pursued in figure 7, 
which shows the marginal stability curves calculated for the values of flow and 
sediment parameters reconstructed from K&S's data as summarized in table 2. 
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FIGURE 7. Marginal stability curves calculated for the values of flow and sediment parameters 
reconstructed from data reported by Kuhnle & Southard (1988) (run H3). 

Figure 7 suggests that when D,, is as large as in K&S’s experiments (values of about 
0.1, ten times larger than for the Duck Creek observations) the region of instability 
is no longer clearly distinguishable from that characterizing dune instability, so that 
the sorting mechanism plays a subsidiary role. Hence under the conditions of K&S’s 
experiments the bedforms could be considered to be either bedload sheets or small- 
amplitude dunes, the distinction being no longer as clear as for Muddy Creek and 
Duck Creek. 
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Appendix A 
The linear differential operator L and the matrix A read 

a12 
L =  

131 132 133 a31 a32 a33 
where the coefficients are, respectively, 



\ 

(& + x )2  3 

a12 = -a2U - X I 7  “ I  all = -3+2----(1-x) x [a2x+2 
Ro+x  

Ro 
&+x’ a23 = -&) f 2(1 - x)- 

Ro 
a13 = 2- - (1 - X) 

R o + x  

a21 = -x+2(1 -x)- a22 = -1, x 
Ro +x, 

d uo 
a33 = &--. 

dX 

> 

Appendix B 
From (4.18), expanding in powers of 00, we readily obtain the relation 

with 

From (4.14) we obtain the expansion 

where 

and 

where 
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q:l = ~ 1 0  [In 2(1- P )  + fq] + Towl(In 2 + tq), qhl = r11 [In2(1- P )  + tq] , 
(B 12a, b )  

We can now proceed to solve the integro-differential system (4.22) at the various 
orders of approximation. 

O(a,') 
At O(o;') (4.21) gives 

Laoo9,t + iaquooF0 0: 
an equation which is readily solved in the form 

40 = f o ( ~ )  exp(-iacot)E1(~i)E2(72), 

where 
quo0 co = -. 
L O O  

O ( 0 3  
Proceeding to the next approximation, we find from (4.22~) 

LaooF1,t + iaquooF1 = 
co 

- LaooLao1Fo,t - L a o o y o , T i  - iaquoo (Go190 - FOO 1, GolSodV) . (B 19) 

Equation (B 19) is readily solved setting 

El = exp(-iacoclzl), (B 20) 

in (B 17), with c1 specified by the integral equation 

c1f0 + LaolfO - Golf0 - FOOYII Y ~ O ~ W  = 0. (B 21) s: 
Furthermore we can now set 

9, =o, (B 22) 
as (B 20) and (B 21) reduce (B 19) to a homogeneous equation for 9 1  identical with 
(B 16), allowing its solution to be absorbed into Po. 

The amplitude el of the bottom perturbation driven by the sorting wave satisfies 
the equation obtained from (4.22b) at O(oo), which reads 



where the overbar is defined by (4.23) with Fm instead of Fo. 
The solvability condition is readily found to read 

[ L o 2  + Luo lCl  + c2 - Go21 fo 

having set 

and 

E2 = exp(-iacoc2~2), 
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